© STD - 0431 - 2670142 FAX - 0431 - 2670143

DHANALAKSHMI SRINIVASAN

INSTITUTE OF TECHNOLOGY

(Approved by AICTE, New Delhi & Affiliated to Anna University) NH - 45, Trichy - Chennai Trunk Road, SAMAYAPURAM,TRICHY - 621 112.

E.mail:dsit2011@gmail.com Website:www.dsit.ac.in

COURSE PLAN

Subject code: BM8651

Branch/Year/Sem/Section: B.E BME/III/VI

Subject Name: BIO MECHANICS

Staff Name: R.NISHANTHINI

Academic year:2019-2020

Batch:2017-2021

COURSE OBJECTIVE

Explain the principles of mechanics.

Discuss the mechanics of physiological systems.

Explain the mechanics of joints.

Illustrate the mathematical models used in the analysis of biomechanical systems

TEXT BOOK:

T1 Y.C. Fung, —Bio-Mechanics- Mechanical Properties of Tissues ||, Springer-Verlag, 1998.

T 2. Subrata Pal, –Textbook of Biomechanics||, Viva Books Private Limited, 2009.

REFERENCES:

R1. Krishna B. Chandran, Ajit P. Yoganathan and Stanley E. Rittgers, —Biofluid Mechanics: The Human Circulation ||, Taylor and Francis, 2007.

R2. Sheraz S. Malik and Shahbaz S. Malik, —Orthopaedic Biomechanics Made Easy||, Cambridge University Press, 2015.

R 3. Jay D. Humphrey, Sherry De Lange, —An Introduction to Biomechanics: Solids and Fluids, Analysis and Design||, Springer Science Business Media, 2004.

R4. Shrawan Kumar, –Biomechanics in Ergonomics||, Second Edition, CRC Press 2007.

R 5. Neil J. Mansfeild, –Human Response to Vibration ||, CRC Press, 2005.

R6. Carl J. Payton, –Biomechanical Evaluation of movement in sports and Exercise ||, 2008.

WEB RESOURCES

W1: https://www.webopedia.com/DidYouKnow/Hardware_Software/mobile-operating-systems-mobile-os-explained.html (TOPIC NO: 43)

 $W2: https://www.techotopia.com/index.php/IOS_6_Architecture_and_SDK_Frameworks$

(TOPIC NO: 44)

W3: https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_ Overview/CoreOSLayer/CoreOSLayer.html (TOPIC NO: 45)

TEACHING METHODOLOGIES:

- ➢ BB BLACK BOARD
- VIDEO VIDEO TUTORIAL
- ➢ PPT POWER POINT PRESENTATION

9

9

9

9

DHANALAKSHMI SRINIVASAN

INSTITUTE OF TECHNOLOGY (Approved by AICTE, New Delhi & Affiliated to Anna University) NH - 45, Trichy - Chennai Trunk Road, SAMAYAPURAM,TRICHY - 621 112. E.mail:dsit2011@gmail.com Website:www.dsit.ac.in

DEPARTMENT OF BIOMEDICAL ENGINEERING

BIOMECHANICS

UNIT I - INTRODUCTION TO MECHANICS

Introduction – Scalars and vectors, Statics – Force types, Resolution and composition of forces, Moments of force and couple, Resultant force determination, parallel forces in space, equilibrium of coplanar forces, Dynamics, Basic principles – Linear motion, Newton's laws of motion, Impulse and Momentum, Work and Energy Kinetics – Velocity and acceleration, Kinematics – Link segment models, Force transducers, Force plates, Introduction to Constitutive equations – Constitutive equations of Nonviscous fluid, Newtonian Viscous fluid and Hookean Elastic solid

UNIT-II BIOFLUID MECHANICS

Intrinsic fluid properties – Density, Viscosity, Compressibility and Surface Tension, Viscometers – Capillary, Coaxial cylinder and cone and plate, Rheological properties of blood, Pressure-flow relationship for Non-Newtonian Fluids, Fluid mechanics in straight tube – Steady Laminar flow, Turbulent flow, Flow development, Viscous and Turbulent Sheer Stress, Effect of pulsatility, Boundary Layer Separation, Structure of blood vessels, Material properties and modeling of Blood vessels, Heart –Cardiac muscle characterisation, Native heart valves – Mechanical properties and valve dynamics, Prosthetic heart valve fluid dynamics.

UNIT-III BIOSOLID MECHANICS

Constitutive equation of viscoelasticity – Maxwell &Voight models, anisotropy, Hard Tissues – Structure, blood circulation, elasticity and strength, viscoelastic properties, functional adaptation, Soft Tissues – Structure, functions, material properties and modeling of Soft Tissues – Cartilage, Tendons and Ligaments Skeletal Muscle – Muscle action, Hill's models, mathematical modeling, Bone fracture mechanics, Implants for bone fractures

UNIT- IV BIOMECHANICS OF JOINTS

Skeletal joints, forces and stresses in human joints, Analysis of rigid bodies in equilibrium, Free body diagrams, Structure of joints, Types of joints, Biomechanical analysis of elbow, shoulder, spinal column, hip, knee and ankle, Lubrication of synovial joints, Gait analysis, Motion analysis using video.

UNIT V MODELING AND ERGONOMICS

Introduction to Finite Element Analysis, finite element analysis of lumbar spine; Ergonomics – Musculoskeletal disorders, Ergonomic principles contributing to good workplace design, Design of a Computer work station, Whole body vibrations, Hand transmitted vibrations.

TOTAL: 45 PERIODS

BM8651

LTPC 3 003

Topic	Topic Name	Books For	Page No	Teaching Methodology	No of periods	Cumulati ve
	reference Methodology		Methodology	required	periods	
UNIT I	INTE	RODUCTION	TO MECHAI	NICS		(9)
1.	Introduction , Scalars and vectors, Statics ,Force types, Resolution and composition of forces,			BB	1	1.
2.	Moments of force and couple, Resultant force determination			BB	1	2.
3.	parallel forces in space, equilibrium of coplanar forces, Dynamics			BB	1	3.
4.	Basic principles ,Linear motion, Newton's laws of motion,			BB	1	4.
5.	5.Work and Energy Kinetics ,Velocity and accelerationBB		1	5.		
6.	6. Kinematics ,Link segment BB 1		1	6.		
7.	Force transducers, Force plates, Introduction to Constitutive			BB	1	7.
8.	Constitutive equations of Nonviscous fluidBB1		1	8.		
9.	Newtonian Viscous fluid and Hookean Elastic solid		BB	1	9.	
LEARNING OUTCOME:						
At the end of unit , the students will be able to						
• K	now the fundamentals of mechanics	S.				
• U	nderstand the concept of kinetics &	kinematics.				
	Define the types of fluids. INIT I PLOEL UD MECHANICS (0)					(0)
	Intrinsic fluid properties –					(9)
10.	Density, Viscosity, Compressibility and Surface Tension, Viscometers			BB	1	10.
11.	Capillary, Coaxial cylinder and cone and plate, Rheological properties of blood			BB	1	11.

12.	Pressure-flow relationship for Non-Newtonian Fluids, Fluid mechanics in straight tube		BB	1	12.
13.	13.Steady Laminar flow, Turbulent flow, Flow development, Viscous and Turbulent Sheer Stress,		BB	1	13.
Effect of pulsatility, Boundary14.Layer Separation, Structure of blood vessels,		BB	1	14.	
15.	Material properties and modeling of Blood vessels, Heart		BB	1	15.
16.Cardiac muscle characterisation, Native heart valves		BB & VIDEO	1	16.	
17.	Mechanical properties and valve dynamics		BB	1	17.
18	Prosthetic heart valve fluid dynamics.Prosthetic heart valve fluid I		BB	1	18
 LEARNING OUTCOME: At the end of unit, the students will be able to Understand the concept of fluid mechanics. Define steady flow. Gain the knowledge about his fluid mechanics. 					
UNIT - III BIOSOLID MECHANICS				(9)	
19	Constitutive equation of viscoelasticity		BB	1	19
20	Maxwell &Voight models, anisotropy, Hard Tissues		BB	1	20
21	21 Structure, blood circulation, elasticity and strength		BB	1	21
22	viscoelastic properties, functional adaptation		BB	1	22
23	23SoftTissues,Structure,and modeling of Soft Tissues		BB	1	23

25	Muscle action,		BB	1	25
26	26 Hill's models, mathematical modeling,		BB	1	26
27	Bone fracture mechanics, Implants for bone fractures.		BB	1	27
LEARNI At the e • U • G • D UNIT IV 28 29 30	NG OUTCOME: nd of unit , the students will be all nderstand the concept of bio solid r ain knowledge about muscle action efine viscoelastic properties. BIOMECHAN Skeletal joints, forces and stresses in human joints, Analysis of rigid bodies in equilibrium, Free body diagrams,	ole to nechanics. NICS OF JOIN	NTS BB BB & VIDEO BB	1 1 1 1	(9) 28 29 30
31	Structure of joints, Types of 31 joints		BB	1	31
Biomechanical analysis of elbow, 32 shoulder,			BB	1	32
33 Biomechanical analysis of spinal column, hip, knee and ankle			BB	1	33
34	Lubrication of synovial joints		BB	1	34
35	Gait analysis		BB	1	35
36	36 Motion analysis using video		BB	1	36
 LEARNING OUTCOME: At the end of unit , the students will be able to Understand the concept of mechanism of joints. Known about gait analysis. Cet the knowledge about joints and its structure. 					
UNIT V MODELING AND ERGONOMICS (9)					(9)
37	Introduction to Finite Element Analysis		BB	1	37
38	finite element analysis of lumbar spine		BB	1	38

39	Ergonomics		BB	1	39
40 Musculoskeletal disorders			BB	1	40
41	Ergonomic principles contributing to good workplace		BB	1	41
42	Design of a Computer work station		BB	1	42
43Whole body vibrationsPPT1		1	43		
44 Hand transmitted vibrations			PPT	1	44
45	Importance of hand transmitted vibration		BB	1	45
LEARNING OUTCOME					

At the end of unit , the students will be able to understand modeling & ergonomics.

COURSE OUTCOME

At the end of the course, the student should be able to:

- Understand the principles of mechanics
- Outline the principles of biofluid dynamics.
- Explain the fundamentals of bio-solid mechanics.
- Apply the knowledge of joint mechanics.
- Give Examples of computational mathematical modelling applied in biomechanics.

CONTENT BEYOND THE SYLLABUS

• Sports and injury mechanics

CONTINUES INTERNAL ASSESSMENT DETAILS

ASSESMENT NUMBER	Ι	II	MODEL
TOPIC NO.(UNIT)	1-18(1 st & 2 nd units)	19-36 (3 rd & 4 th units)	1-45 (units 1-5)

ASSIGNMENT DETAILS

ASSIGNMENT NUMBER	Ι	II	III	
TOPIC NUMBER FOR REFERENCE	1-18(1 st & 2 nd units)	19-39 (3 rd & 4 th units)	1-45 (units 1-5)	
DEAD LINE				

ASSIGNMENT NUMBER	BATCH	DESCRIPTIVE QUESTIONS/TOPIC (Minimum of 8 Pages)	
I	60 members	Kinetics and kinematics of motionRheological properties of blood	
II	60 members	 Viscoelastic properties Structure of joints, Types of joints 	
III	60 members	Finite element analysis	